Tutorial: MicaSense → Landsat Harmonization¶
This tutorial demonstrates how to harmonize drone-scale multispectral reflectance (e.g., MicaSense RedEdge) into Landsat-equivalent band values using the SpectralBridge regression workflow.
Overview¶
You will learn how to:
- prepare MicaSense reflectance inputs
- apply band mapping and wavelength matching
- use regression tables to harmonize reflectance
- inspect harmonized Landsat-style products
This allows direct comparison between drone and satellite observations.
1. Inputs¶
You need reflectance values from a calibrated drone multispectral system. These can be:
- stacked reflectance TIFFs
- ENVI-formatted band images
- Parquet tables exported from your workflow
Each band should have known center wavelengths.
2. Harmonization workflow¶
SpectralBridge uses regression relationships linking MicaSense band values to Landsat OLI bands. These regressions are derived from calibrated field and NEON comparisons.
Run the following command:
```bash spectralbridge-micasense-to-landsat \ --input your_micasense_input \ --output ms_to_ls_output \ --regression-table data/regression/micasense_to_landsat.csv Outputs include: Landsat-equivalent reflectance table diagnostic statistics optional ENVI export 3. Inspecting harmonized reflectance Example: import pandas as pd
df = pd.read_parquet("ms_to_ls_output/micasense_landsat_harmonized.parquet") df.head() Columns will match Landsat bands: Blue Green Red NIR SWIR1 SWIR2 4. NDVI sanity check df["ndvi"] = (df["NIR"] - df["Red"]) / (df["NIR"] + df["Red"]) df["ndvi"].describe() If harmonization worked correctly, NDVI should fall within typical vegetation ranges (0.1–0.9 for most cases). 5. Next steps Integrate drone → NEON → Landsat comparisons Combine harmonized products with NEON-derived spectra Use the merged output in ecological modeling workflows See also: NEON → Landsat tutorial Pipeline outputs